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Abstract
We perform Langevin simulations on the depinning dynamics of two-dimensional magnetized
colloids on a random substrate. On increasing the magnetic field strength, we find for the first
time a crossover from plastic to smectic flows as well as a crossover from smectic to elastic
crystal flows above depinning. For both the smectic and elastic crystal flows, a power-law
scaling relationship could be obtained between the average velocity and applied driving force.
The scaling exponent is found to be larger than 1 for smectic flow. But, for the elastic crystal
flow, the scaling exponent is found to be less than 1. For the plastic flow, no power-law scaling
relationship between the average velocity and applied driving force can be derived and history
dependence of the depinning occurs. Within the crossover from plastic to smectic flows, a
sudden decrease in the critical driving force is observed, and a sudden increase is found in the
critical driving force across the crossover from smectic to elastic crystal flows, accompanied by
a crossing of the curves of average velocity versus driving force.

1. Introduction

Colloids can display intriguing phase transitions which
are ubiquitous in nature and have been studied for
decades [1]. Recently much attention has been paid to
colloidal systems [2–27]. Since their size and nature allow
us to easily tune the shape and strength of the colloidal
interaction and to directly visualize the particles under a
microscope [9, 11, 13, 16, 19, 20, 25–27], colloids provide
an ideal model system for studying the basic problems in
condensed matter physics, in particular, for studying two-
dimensional (2D) ordering and melting [9, 19–22, 25–27].

Most recently, the response of colloidal system under an
external field has attracted extensive attention. One can obtain
significant insight into the nature of order by investigating
the response of a system to a perturbing force, and through
studying the colloidal dynamics, one can control and tailor
the external perturbation [3] as well. In 2002, the depinning
of 2D charged colloids on a toy substrate was investigated
numerically; a crossover from elastic crystal to plastic flows
was found above depinning [4]. Then in 2003, we revisited
the dynamics of 2D charged colloids on a realistic quenched
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substrate, and the crossover from elastic crystal to plastic flows
was also observed above the depinning [7]. Then in 2008, the
crossover from elastic crystal to plastic flows was confirmed
experimentally in 2D charged colloidal crystals [19].

Some colloidal particles are superparamagnetic; once
a magnetic field is applied, the magnitude of the induced
magnetic moment in the particles scales linearly with the
magnetic field strength [3, 12–14, 20, 22, 25–27]. Therefore,
an almost perfect 2D system could be realized and the order
and dynamics of 2D systems could be established easily in
magnetized colloids. However, up to now, the dynamics of
driven magnetized colloids has remained open.

In 2008, we attempted an investigation of the dynamics of
2D magnetized colloids on a realistic quenched substrate [23].
On increasing the strength of the substrate, we found a
crossover from elastic crystal to plastic flows above depinning,
in agreement with that of charged colloids [4, 7, 19]. But, in
the plastic regime, a crossover from plastic to smectic flows
as well as a crossover from smectic to elastic crystal flows
was observed on increasing the applied driving force above
depinning.

Because the interaction between magnetized colloidal
particles is proportional to the square of the magnitude
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Figure 1. Series of curves of average velocity v versus applied
driving force f for different values of B ′.

of the magnetic moment [3, 12–14, 20, 22, 25–27], the
dynamics of magnetized colloids is completely controlled
by the external magnetic field strength. This is valuable
for studying the dynamics as well as realizing macroscopic
separation of different species of particles in biological and
other mesoscopic systems by adjusting the magnetic field
systematically.

In this paper, we will investigate the depinning of 2D
magnetized colloids on a realistic quenched substrate while
changing the magnetic field strength systematically. A
crossover from plastic to smectic flows as well as a crossover
from smectic to elastic crystal flows will be found above the
depinning with increase in the magnetic field strength.

2. The model

The motion of magnetized colloidal particles is described by
the Langevin equation [4, 7, 23, 28],

η
dRi

dt
= −

∑

i �= j

∇iUcc(Ri − R j) −
∑

j ′
∇i Ucs(Ri − r j ′)

+ fL
i (t) + f, (1)

where η is a damping constant, chosen as unity in this paper. Ri

and r j ′ are the coordinates of the i th colloid and the j ′th center
of pinning in the substrate, respectively. Ucc is the potential of
interaction between colloids, Ucs is the potential of interaction
between the colloid and pinning in the substrate, f is the driving
force due to an applied electric field [19]. fL

i is the Langevin
random fluctuating force, which is described by [7, 23, 28]
〈fL

i (t)〉 = 0 and 〈 f L
iα(t) f L

jβ(t ′)〉 = 2ηT δi jδαβδ(t − t ′), where
the temperature T is fixed as the bare Kosterlitz–Thouless
melting temperature of the 2D system [29]. Here, we neglect
the hydrodynamic interaction between the colloidal particles
since we are in the low volume fraction area.

The potential of interaction between magnetized colloids
is that of parallel dipoles caused by a magnetic field
perpendicular to the plane of the substrate, and reads
as [3, 23, 27]

U(r) = μ0

4π

M2

r 3
, (2)

where μ0 is the magnetic permeability of free space. The
magnetic moment M = χ B , with χ the effective susceptibility
and B the magnetic field strength. Here we take μ0

4π
M2 = B ′

as the dimensionless strength of interaction between colloids,
relatively to the pinning strength in the substrate. B ′ can be
externally controlled by means of the magnetic field strength
B [26]. We change B ′ (i.e., change the magnetic field strength

Figure 2. The power-law scaling relationship between v and f above depinning. (a) and (b) are for B ′ = 4.0 and 2.5, respectively.
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B) systematically so as to investigate the depinning of 2D
magnetized colloids.

As in [23], the substrate is chosen as a realistic quenched
one and is simulated by randomly distributed point-like
pinning centers. The interaction between colloids and pins
in the substrate is generally modeled as a attracting Gaussian
potential [7, 23]. The pinning strength in the substrate is fixed
in this paper.

All lengths are measured in units of the lattice constant
a0 of the ideal triangular lattice. 400 magnetized colloids
are placed initially in a perfect triangular lattice with periodic
boundary conditions, and 800 point-like pinning centers are
randomly distributed in the substrate. The driving force f
is increased along the horizontal symmetry axis x and the
average velocity v = 1

N

∑N
i vi · x̂, where N is the number

of magnetized colloids, is measured at each increment in this
direction.

3. Results and conclusions

Figure 1 presents a series of curves of average velocity v versus
applied driving force f for different values of B ′. It is found
that, for each curve, there exists a critical driving force fc

below which the colloids are pinned and small advances due
to fluctuations can be neglected and the average velocity v

is zero. Above fc, v increases with f and we find different
features in the curves for different values of B ′. For small
values of B ′ (see the curves for B ′ = 2.2–2.4), v increases
with f non-linearly; even steps appear above fc. No power-
law scaling relationship could be derived between v and f .
These are typical characteristics of plastic flow in velocity–
force dependence, consistent with our previous simulations on
charged colloids [7] and magnetized colloids [23] as well as
vortex lattices [28]. It should be noted that it may be that the
finite size of the system leads to such strong fluctuations that a
scaling fit could not be made. It is possible that if much larger
systems are simulated the fluctuations will be averaged out and
a power-law fit with an exponent of 2.0 might be obtained [4].

For larger values of B ′ (see the curves for B ′ = 2.5–3.3),
steps disappear and linearity begins to occur in the curve of
v versus f above fc. A power-law scaling relationship could
be obtained between v and f above fc. The features are the
characteristics of elastic flow. We find that the scaling exponent
is larger than 1, as seen in figure 2(b) where we give the
power-law scaling relationship between v and f above fc for
B ′ = 2.5 and the scaling exponent ζ = 1.08 is found.

When B ′ is increased above a certain value (B ′ � 3.3), a
more evident linearity is found in the v– f dependence above
fc and the power-law relationship could also be obtained. But,
in this case, the scaling exponent is found to be less than 1, as
shown in figure 2(a) where we present the power-law scaling
relationship between v and f near depinning for B ′ = 4.0 and
the scaling exponent ζ = 0.64 is observed. This is very close
to those of 2D charged colloids [19] and 2D charge density
wave (CDW) systems [30, 31] as well as Wigner crystal [32]
where ζ = 2/3.

Figure 3 presents the history dependence of the depinning
processes for different values of B ′. An evident history

Figure 3. History dependence of the depinning for B ′ = 2.4, 3.0,
and 3.5.

dependence is found for small values of B ′, as seen in the upper
panel where the history dependence of the depinning is given
for B ′ = 2.4. This is a characteristic of plastic flow. But for
large enough values of B ′, the history dependence disappears,
as shown in the two lower panels where we give the history
dependence of depinning for B ′ = 3.0 and 3.5, coincident with
the characteristics of elastic flow.

To distinguish the above flows explicitly, in figure 4
we give the colloidal coordinates (figures 4(a)–(c)) and
corresponding static structure factors (figures 4(d)–(f)) at a
certain driving force above fc ( f/ fc = 1.1) for B ′ = 2.4 ((a)
and (d)), 2.5 ((b) and (e)), and 3.3 ((c) and (f)). The structure
factor is defined as S(k) = 〈| 1

N

∑
i=1 eik·Ri |2〉. For small

values of B ′ (B ′ � 2.4), colloids flow plastically. In such a
case, the lattice is destroyed and the six neighbors of the lattice
cannot be maintained as they move, as seen in figure 4(a). No
Bragg peaks appear and only one peak is found, at the center
(kx = ky = 0), as shown in figure 4(d).

For larger values of B ′ (B ′ = 2.5–3.3), colloids move
in a smectic phase above depinning. In this case, although
the lattice is distorted, each colloidal particle keeps the same
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Figure 4. Colloid coordinates ((a)–(c)) and structure factors ((d)–(f)) at a driving force above depinning ( f/ fc = 1.1). (a) and (d) are for
B ′ = 2.4, (b) and (e) are for B ′ = 2.5, (c) and (f) are for B ′ = 3.3.

six neighbors as it moves, as shown in figure 4(b). The
corresponding structure factor shows two Bragg peaks along
the driving force direction, as given in figure 4(e).

When B ′ is increased above certain values (B ′ � 3.3),
elastic crystal flow takes place above depinning, colloids move
in a perfect lattice and all the colloids keep the same six
neighbors as they move; see figure 4(d). The six Bragg peaks
appear clearly in the corresponding structure factor, as seen in
figure 4(f).

In addition, we find that, accompanying the crossover
from the plastic to smectic flows with increase in B ′, the critical
driving force fc decreases suddenly, as shown in figure 5(b)
where we give the curve of fc versus B ′. Corresponding to the
sudden decrease, a negative peak is shown in the differential
d fc/dB ′, as presented in the inset of figure 5(b).

However, with a further increase in B ′, a crossover from
smectic to elastic crystal flows takes place, and within the
crossover from smectic to elastic crystal flows, a distinct
characteristic is found: that fc increases suddenly, as seen in
figure 5(a). The differential d fc/dB ′ displays a peak, as shown
in the inset of figure 5(a), and corresponding to the peak, a clear
crossing of v versus f curves takes place. From the curves for
B ′ = 3.3 and 4.0 in the figure 1, we can see this point.

To summarize, we have investigated the depinning of two-
dimensional magnetized colloids. On increasing the magnetic
field strength, we find for the first time a crossover from
plastic to smectic flows as well as a crossover from smectic
to elastic crystal flows above depinning. A power-law scaling
relationship could be obtained between the average velocity
and the applied driving force above depinning for both the
elastic crystal and smectic flows, but the scaling exponents
are found to be quite different. For the elastic crystal flow,
the scaling exponent is less than 1, but it is larger than 1 for
the smectic flow. Accompanying each crossover, the critical

Figure 5. Critical driving force fc versus B ′. The insets show the
corresponding differential d fc/dB ′ versus B ′.

driving force shows a sudden change. It should be pointed
out that the transition to a line ordering is well known in
concentrated suspensions of monodispersed spheres from both
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simulations [6, 32, 33] and experiments [22, 34, 35]. In fact,
the existence of a smectic phase was predicted by Nelson
and Halperin [36, 37] as a phase intermediate between the
isotropic liquid and crystalline phase with two continuous
defect-mediated transitions [22]. Our results are helpful for
investigating the response of colloidal systems under magnetic
and electric fields as well as for controlling and tailoring the
external fields according to colloidal dynamics.
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